If it's not what You are looking for type in the equation solver your own equation and let us solve it.
96x^2-20x+1=0
a = 96; b = -20; c = +1;
Δ = b2-4ac
Δ = -202-4·96·1
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4}{2*96}=\frac{16}{192} =1/12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4}{2*96}=\frac{24}{192} =1/8 $
| 17x+40=6 | | 10x+28=-2 | | -30+(-10x)=0 | | 55x+256=-19 | | 9^x-4(^(x+1))+27=0 | | -86=-6+8a | | 0.2x+100=0 | | 34/x=2/8 | | (6x+9)=47x | | 14k+3=2(6-k)+9 | | 3x+15+3x+15+9x=180 | | 0.80x+30=1.2x+14 | | z+11=-17 | | 8-4(8-6s)=-3+3 | | 175m-7m+48000=51000-150m | | 2r+13=21 | | Y-45=78-y | | 25v-2=625 | | 2r+45=180 | | B4=9b | | (0.25)x-13=7 | | 14q-8=24 | | 5+6y-9y+6y=11 | | (4x-6)^2-8(4x-6)+7=0 | | 9y+3=8-6y | | x+74=73+37+x | | 12y+23=11y+2 | | y=650.000(1+0.04)^7 | | y=12000(1+0.06)^4 | | 6(k-81)=72 | | 10(u-95)=20 | | 4w2+3=-7w |